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Abstract

Non-informatics cost estimation is a tedious process and requires substantial amount of time and manual operations. How-
ever, BIM adoption approaches have attracted significant attention with this respect. Since BIM models are object-based
with built-in parametric information, it is easier to capture the quantities of building elements and deliver more accurate
estimates with less errors and omissions. As most of the current cost estimation standards are designed and developed based
on old-fashioned construction project delivery systems, a lack of compatibility between their classification and BIM-based
informatics is observed. This study, therefore, aims to develop an informatics framework to integrate a cost estimation
standard with BIM in order to expedite the 5D BIM process and enhance the digital transformation practices in construction
projects. The developed framework is considered to be a new approach which can automatically estimate the cost of building

elements using machine learning-integrated algorithms and MATLAB engine for its effective implementation.

Keywords Building information modelling - 5D BIM - Machine learning - Cost estimation standard

Introduction

One of the critical and vital processes in construction pro-
jects is a precise cost estimate. As the project becomes
larger and more complex, the more accurate estimate of
the cost of a project, over time, becomes a major factor in
the project success [1]. Cost estimation refers to the pro-
cess of calculating and projecting the costs of three main
parts including all building materials, labors and equip-
ment within the scope of the project [2, 3]. It involves
performing quantity takeoff (QTO), which is a list of
quantities of the items and materials needed for a project.
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Cost items contain the quantity and unit price of particular
resources, connected with one or several tasks [4]. The
cost of each task is estimated by multiplying the required
quantities with their unit cost items and the total cost is,
then, the sum of corresponding cost items [5, 6]. Since the
cost estimation is considered as one of the main parts of
the projects and decision-making at the conceptual stage,
its accuracy plays a key role in the success and quality of
the project [7, 8], while cost overrun is the major prob-
lem, particularly in projects with tight budgets. Indeed,
the cost overrun can trigger the failure of projects [9] in
developing countries like Iran where its economy suffers
from huge inflation and uncertainty [10-12]. On the other
hand, the cost estimation process is still labor-intensive
and error-prone [13]. In fact, estimators should manually
take off the information from printed CAD drawings and
2D-based documents. This process is not only error prone
and time consuming but also it is heavily relied on the esti-
mators’ knowledge and experience. So, it makes it difficult
to process in large and complex projects [14—16]. Another
challenging task is when estimators may need to identify
different design conditions in their projects [17]. Espe-
cially, if the design changes, estimators should manually
determine affected costs and adjust tasks and resources
based on the updated project design. This is mainly error
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prone and leads to inconsistencies and inefficiencies of
cost estimation process [18]. Therefore, there is still a need
for practical frameworks and prototypes to accurately and
precisely classify building cost informatics, estimate the
total cost of the project and automate its estimation pro-
cess [2].

The advent of the BIM can resolve many of the problems
caused by the use of traditional estimation methods [19, 20].
BIM offers a powerful solution to consistently produce take-
offs, counts and measurements through the updated model
[6, 21]. As opposed to traditional methods, all of the cost
estimation data can be exchanged through different soft-
ware with the help of collaborative platforms and open data
exchanges standard for BIM such as Industry Foundation
Class (IFC) [22, 23]. This information exchange can signifi-
cantly reduce the amount of workloads and human-oriented
errors [24, 25]. Furthermore, BIM is a digital representation
of physical and functional traits of facilities. The product
centric and object-oriented information of the BIM model
is enriched with parametric building objects as properties
[26, 27]. All of these information can be extracted from BIM
models for future analyses and so, the BIM model can have
the ability to assist decision making in different areas of con-
struction [14, 28, 29]. Ultimately, Davidson [30] indicates
that BIM has the ability to takeoff the cost analysis at any
stage of a project lifecycle.

Since the traditional BIM-based cost estimation requires
human interference and there is no standardized cost speci-
fication for being connected with each building element,
the BIM-based cost estimation is still a time-consuming,
error-prone process and suffers from a low return on invest-
ment [31, 32]. Therefore, this study aims to eliminate the
human intervention by developing a machine learning and
5D BIM-integrated cost estimation prototype which classi-
fies building cost elements, links with the 5D BIM process
and enhances the adaptation of the cost classification sys-
tems (Iranian Cost Estimation Standard, in this case) with
BIM-based informatics. This research also extends a new
approach to the automated cost estimation process through
applying a machine learning-integrated method. In which,
first, an informatics prototype is built, so that all construction
cost items can be classified, collected, developed and trans-
ferred to the Excel software. Second, the database of BIM is
connected and updated through the Iranian Cost Estimation
Standard (ICES) [33], and finally, the developed applica-
tion extracts QTO from each item-cost and estimates the
cost of the whole project. Furthermore, in order to automate
the process, a suite of machine learning; Artificial Neural
Network (ANN) algorithms including Multilayer Perceptron
(MLP), Radial Basis Function (RBF) and Adaptive Neuro
Fuzzy Inference System (ANFIS) is developed and applied
via setting the parameters of the project as the inputs and the
result of costs as the outputs.
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Literature review

There are many studies which emphasize on and present
the BIM-based cost estimation process. Balali, Zalavadia
[34] proposed a virtual reality (VR)-based cost estima-
tion approach for improving the ability of design changes
and cost updates during preliminary phase of the project.
However, the main approach only represents elemen-
tal costs of the project and it fails to estimate the cost
of labors or equipment in the project. Bademosi, Tayeh
[35] also developed a framework that utilizes VR as a
method of visualization in order to improve the efficiency
of cost estimation process and concluded that using VR
can significantly reduce the time of estimation process
as well as streamline the process of interactive estimates
for the project. proposed a knowledge-based approach for
automating the process of code-compliant QTO using the
combinations of standard method of measurement rules
and semantic information. Despite the effectiveness of the
proposed method, the main approach still needs human
intervention for extracting the QTO-related information
which is prone to errors and faults. Valentini, Mirarchi
[36] compared two different methods of cost estimation
including traditional and BIM-based methods and found
that using BIM can both increase the precision and reduce
the cost of the process. developed a BIM-based system for
analyzing incremental costs of prefabricated projects in
China. This two-dimensional incremental cost index sys-
tem was validated in a real project in the Shanghai, China.
developed a BIM based method for estimating the cost of
steel frames in the early phase of building projects. The
proposed integrated steel design approach can estimate the
whole costs of steel frames including materials, fabrica-
tions and erection. However, the main framework can be
only limited to steel projects while there are many other
types of projects like wood and concrete projects.
Akanbi and Zhang [37] developed a semantic natural
language processing-based approach which can automate
the process of information extraction and matching in the
main process of cost estimation. Khosakitchalert, Yabuki
[38] proposed an automatic approach for improving the
accuracy of QTO in the BIM model for compound ele-
ments. The proposed method lays the groundwork for more
optimized cost estimation as many overlapping regions are
eliminated in this process. Wang, Wang [39] developed a
new framework for cost estimation which combines project
schedules from work breakdown structure (WBS) and cost
information from cost breakdown structure (CBS) in the
BIM area. Firstly, all quantities for one cost item in the
BIM are taken off; then, the pop-up menus are represented
for estimating the cost of that item. This utilizes keynotes,
assembly codes and family types in the BIM and the user
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can manually explore the names items and gain the cost of
the desired items. However, despite the practicality of the
proposed method, the model has less user-friendly inter-
face which complicates the application of the model. In
addition, the user must have sufficient knowledge of BIM
for efficient performance of the model. Wu, Wang [40]
developed a new cost estimation framework which enables
the designers to estimate the cost of structural elements
in the preliminary stage of the project by linking ETABS
and BIM model. The proposed method is, then, examined
through a reinforced concrete building and its compliance
with Taiwanese architectural laws and guidelines. Ma,
Liu [13] developed an ontology-based framework that
streamlines the adoption of the formulized representation
of cost specifications as to improving the efficiency of cost
specifications implementation in computer programs. The
main advantage of this study is its capability to adapt to
the other cost specifications based on the bill of quan-
tity method. Ma and Liu [41] proposed a new approach to
identify and derive the construction information in order
to increase the automation of cost estimation for tender-
ing of building projects based on the BIM-based design.
Joosung and Jaejun [42] developed a 4D simulation frame-
work which can seek out more efficient management in
modular construction projects. According to this meth-
odology, projects can benefit from the reduction in time
and cost required for module yields. Zanni, Sharpe [43]
examined the process of integration between the whole
lifecycle cost and BIM. The method only concentrates on
the emerging private rental sector since the built-to-rent
market is repeatable task and similar workflow pattern.
The proposed model has the potential of improving BIM
lifecycle management via an augmented decision-making
approach which is integral to the natural design develop-
ment process. Fazeli, Dashti [44] developed a BIM-based
cost estimation method which can link Iranian cost speci-
fications with MasterFormat and UniFormat.

There are also other studies which focus on the appli-
cation of machine learning in the process of cost estima-
tion. Jiang [45] proposed the deployment of ANN in cost
estimation and compared the results with RBF neural net-
works. The results indicate the higher performance of ANN
in comparison with RBF neural networks. To optimize the
accuracy of the model, the paper also examined other types
of projects. Huang and Hsieh [46] proposed a BIM-based
method for prediction of labor costs using the combination
of random forest and simple linear regression in construction
projects. The proposed method was then tested through nine-
teen real projects in Taiwan. Chandanshive and Kambekar
[47] examined the potential of multilayer feed forward ANN
along with a backpropagation learning algorithm for cost
estimation in 78 building projects in India. To prevent over-
fitting of the model and improvement in the generalization

competency of neural networks, the paper also used early
stopping and Bayesian regularization approaches. Elghaish,
Abrishami [48] developed an approach for the process of
cost estimation using the combinations of 5D BIM and inte-
grated project delivery. This study also used Monte Carlo
simulation, target value design and activity-based costing
in the main process of cost estimation which can make the
process unique. Bala, Ahmad Bustani [49] used backpropa-
gation ANN for predicting the cost of building projects in
Nigeria. Despite the effectiveness of the model, the study
only takes the institutional type of projects into account and
there is a void for estimating other type of projects. Cheng,
Tsai [50] applied the hybrid of ANN with fuzzy logic as a
tool for reducing uncertainties in the process of cost estima-
tion. The results confirmed the effectiveness of the model
combination in comparison with only ANN approach for
predicting the cost of projects in early phase of the project.

With regards to the literature review, the following limi-
tations still exist in the previous studies. Firstly, although
the previous approaches aim to propose a new method for
cost estimation, few of them apply standardized resource
specifications such as ICES items. ICES not only considers
the cost of materials, but it also takes into account the cost
of labors and equipment which can make the process more
accurate and precise along with the full rich of standard-
ized items which can be updated annually. Furthermore, the
holistic view on the literature indicates that there is still a
room of improvement for BIM-based cost informatics clas-
sification and estimation processes, particularly through
the application of machine learning tools and their proper
integration with the national cost guidelines to increase the
digital transformation uptake in the construction industry.
Finally, few studies try to classify different building ele-
ments in the project and integrate the classified system with
machine learning algorithms to make the process more auto-
mated and deliver superior results.

Methodology

This study aims to develop a machine learning-integrated
5D-BIM informatics prototype for estimating the cost of
buildings and validating the process through using ICES.
Figure 1 demonstrates the research design of this work in
which the process starts with a quantitative analysis and the
workflow design, so that the BIM-based cost estimation is
produced. Then, machine learning algorithms are developed
through the simulation method involving several calculations
and formulas in the MATLAB engine. Through the simula-
tion, researchers are enabled to test the influences of causes
and effects on various variables and likelihood reactions of
different scenarios [51]. In this phase, a workflow should
be developed to integrate machine learning with BIM. The
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Fig. 1 Research design

algorithms are then implemented through training datasets
by machine learning, and the automated cost estimation pro-
cess is generated. According to Hancock and Algozzine [52],
a viable case study demonstrates the values and performance
of the workflow, models or algorithms implemented within a
real-life setting. The algorithms are, hence, performed on a
practical case study for training machine learning and devel-
oping an automated cost estimation through BIM. Finally,
the control dataset is utilized to test the process and find
the optimum performance for machine learning algorithms.

The practical steps for this research design include 6 main
technical phases. Firstly, a database of ICES items is cre-
ated in Excel and automatically imported into BIM author-
ing tool; Revit to align the materials information along with
their extra data. After that, the user should create elements
based on the generated Iranian materials and the system
will then estimate the cost of the building through ANN
and show the results in both BIM and Excel in the form of
reports. However, one of the main challenging tasks for the
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proposed method is to adjust the elements based on ICES
items. Therefore, this study also implements machine learn-
ing for facilitating the process of cost estimation of every
element by using MATLAB functions. By doing so, the user
can estimate cost of the project in the shorter time. So, a
BIM-based extension with six major functions is required to
be developed in Revit to facilitate and automate the cost esti-
mation process. The development of the proposed approach,
as represented in Fig. 2, is explained through the following
Six steps.

Phase 1: developing the library of building
materials

Since Revit software has relatively modest number of build-
ing components, a comprehensive library should be created
by designers to develop a BIM model with high details of
information and components. This library of components
enables designers to develop a BIM model with full details.
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Fig.2 5D BIM prototype development

It is also imperative for a quick and accurate cost estima-
tion according to their price list. The designer can define
different scenarios for the project by changing the different
components (see “Appendix 1) and it will help stakehold-
ers for efficient future decision in terms of cost saving. The
components of a project are provided in the formats of.rvt
and.rfa. So, the designer can download them from formal
webpages such as SmartBIM or ArCat libraries and import
them in the Revit file projects.

Phase 2: creating the BIM model of project

3D model is considered as one of the main benefits of BIM.
This evident merit can greatly assist all practitioners of pro-
jects to detect clashes of building and include data for each
component. This information is needed for an accurate cost
estimation of the project, and therefore, a 3D model should
be created for capturing all quantities of objects.

Phase 3: developing a database for ICES items
in Excel

For estimating the cost of a project in Iran, it is needed to
apply Iranian cost items in the BIM model. For doing so, a
database of ICES items is created in the Excel environment

—_——— -
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results in BIM

A\
|
plar

L Prototype Development

in this phase. This database includes all information of ICES
items including Name, ID, ICES Description and unit costs.

The ICES database includes 909 items which is mainly
used for the cost estimation of structural and architectural
elements of projects. For better understanding about the pro-
cess, the process is described in the form of a sample wall.
Figure 3 shows items of ICES for this sample Wall. Table 1
also indicates all Excel information of ICES items of this
sample wall which is extracted from the main database. The
first column is the name of ICES items and the second, third,
fourth and fifth columns are ICES items, unit cost, formulas
and description, respectively.

Updating Revit materials based on ICES items

In this phase, a plugin is created to import all created ICES
items in the BIM environment. By activating this plugin,
Revit calls the Excel file, the information of ICES are auto-
matically imported into Revit and the respected table is
updated. So, 909 items of ICES were added to the Revit
material list. Figure 4 shows the updated table of Revit after
implementing the created plugin. As shown in Fig. 4, the
name of materials, cost parameters and unit costs are cor-
responded to their ICES names and Keynotes of materials
in Revit.
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Fig.3 Different layers for a sample wall
Table 1 ICES items for the Name ICES item Unit cost Formula
sample wall
Finishing layer with glazed tile 200,108 399,500 Area
Brick wall with cement to sand ratio mortar of 1.5 110,502 425,000 Area
Technical granite stone provision (Extra cost for granite 220,603 73,000 Area
stone layer)
Granite stone layer on the vertical surface 220,504 674,500 Area

Customizing the elements of 3D model according to ICES
items

By compiling the database of ICES items in Revit, the
user updates the elements based on ICES items. For doing
so, the user must update the layers of components accord-
ing to ICES items. Figure 5 shows how the user can add
ICES items in the sample wall. As it can be shown in this
Fig. 5, the wall has four layers and each layer is chosen
from the ICES item database.

@ Springer

Phase 4: quantity takeoffs

In this phase, all quantities of materials are taken-off from
Revit files and sent into the Excel. So, all required data
for cost estimation such as cost items and unit costs in the
ICES along with the geometric information such as area,
volume and length of building elements are exported and
categorized based on BIM parameters (Fig. 6).
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Fig.6 Cost estimation process and reporting to Excel file

Cost items calculation

In this step, all required calculations are performed by multi-
plying all related ICES cost items, corresponding ICES unit
costs and their appropriate quantities of components. There
are different units in the ICES items including square meter,
meter, cubic meter and kilogram. It should be considered
that all of these processes were done before by using formula
instead of units of ICES items (Table 1). Figure 6 demon-
strates a cost estimation for the sample wall along with their
doors and windows. As can be seen in Figs. 4, 6, categories
are estimated including floor, wall, door and windows and
for each of them, a separated sheet is created and the results
of each category and costs are shown in the Excel.

Filling total cost parameter for each element

In this step, the generated total cost parameter is filled by the
function of “Cost-Estimate” in the developed extension. For
doing so, first, all cost information of elements is summed
up in the Excel. The resulted cost data are then set in the
total cost parameter for every component. This parameter
is needed for any future cost prediction using ANN algo-
rithms. These data would be considered as the output data
for machine learning algorithms and would be exported to
MATLAB for getting run (Fig. 7).

Phase 5: estimating the cost of materials
and showing the results in BIM

In the phase 5, the total cost of different categories of
building components is shown in the Revit environment

@ Springer

using the “Cost-Estimate” function. As being explained in
the former steps, all data of elements are sorted according
to the Revit parametric elements and so, the cost figures
are summed up to deliver the total cost estimate (Fig. 8).
The framework also exports the whole reports of the
BIM-based cost estimation to the excel software. This
report can help cost estimators to show all stakeholders
of the project the details of cost estimation. With using
this report, cost estimators can easily change their desired
ICES items for each element using the associated ID and
if there is any error including wrong ICES items or wrong
type of elements, they can easily fix that problem. In fact,
the main objective of this step is to reduce errors resulting
from staff interventions during selecting ICES items in
the phase 3 of the study.

Phase 6: automating the process of cost estimation
with machine learning-integrated 5D BIM prototype
development

The main objective of this phase is to develop an algorithm
for facilitating the process of cost estimation of each element
in the project using the neural network for training data.
Since the process of selecting ICES items for different ele-
ments in the project was time-consuming and error-prone,
this step can help all stakeholders of construction projects
to automatically estimate the cost of elements. In addition,
for understanding the performance of different algorithms
of neural network, three versions of neural networks are
examined including MLP, RBF and ANFIS. Figure 9 shows
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the overview of implementation of the neural network algo-
rithms in MATLAB.

Step 1: exporting effective criteria and total cost in Excel
(input and output data)

The main challenge for this step is to identify main effective
criteria which considerably impact the cost of compound
elements. For doing this, the digitization technique was
applied and the components were corresponded to detect
significant criteria of the total cost of elements. Figure 10
demonstrates a sample wall number 163. As it can be shown,
the first number (1) is gypsum wall which is located as the
below finishing layer of wall, the second number (6) rep-
resents engineering brick which is the structural layer of
wall and the third number (3) demonstrates the trowel finish
concrete wall which is laid in the upper layer of wall fin-
ishing. The similar method is applied for all other building
components, parameters and cost elements.

The total cost parameter is also exported from Revit
into Excel. This parameter is the output for neural network
algorithms. All outputs are exported into the Excel using
“NeuralNetwork-Data” function in the extension.

Step 2: data call by MATLAB

MATLARB is selected in this study because it benefits from
the powerful and flexible engine and is linked well with BIM
models [53]. By having the data in Excel, another plugin is
created which can transfer them to MATLAB, implement
neural network algorithms and finally show the results in
the BIM. Hence, the implementation of the ANN algorithms
encompassing MLP, RBF and ANFIS are explained in the
following three steps.

MLP neural networks implementation in MATLAB The MLP
network is known to be a prevalent and one of the most
prominent networks applied in neural networks. By MLP,
the bias terms and weighted sum of the inputs pass to an
activation level by a transfer function in order to generate
an output. The units are arranged in a feed-forward layered
topology coined as the feed forward neural network. MLP
has some features including any number of inputs, hidden
layers with any number of units, linear combination func-
tions in the input layers, activation functions in the hidden
layers and any number of outputs with any activation func-
tion [54]. Each layer involves a set of neurons and nodes.
The input and output layers are linked by a hidden layer.
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Fig.9 Machine learning implementation process in MATLAB

All connections between the input layers and hidden layers
contain the input weight matrix and all connections between
hidden layers and output layers encompass the output weight

Eq. I:

matrix [55]. Each neuron, by computing the weighted sum
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of its input (xj, for j=1,2 ,...,n), utilizes a nonlinear activa-
tion function in order to achieve the output signal of y as
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where fis the sigmoid activation function which is used in
most feed-forward neural network applications. The function
is demonstrated as Eq. 2:

sgm(o) = T—— @)

After clicking on the “TrainData” function in the devel-
oped extension, Revit asks from users to choose which algo-
rithm should be implemented. By choosing MLP algorithm
function, the data are transferred and processed in MATLAB
and MATLAB sends back the processed data to Revit. Fig-

ure 11 shows how this back-and-forth application works.

RBF neural networks implementation in MATLAB RBF neu-
ral networks as the pattern recognition functions were pro-
posed by several researchers to develop training methods
and increase the precision of the algorithm in comparison
with other neural networks [55]. The RBF networks is well
working at modelling nonlinear function approximations.
One-stage-training can achieve a good result rather than
applying a repetitive process in MLP, as well as early learn-
ing of the application [56]. It is also used in the data classi-
fication, system modelling and control [55]. It includes one
input layer, one hidden layer with a nonlinear RBF activa-
tion function along with one linear output layer. Each RBF
has two key parameters, representing the location of the
functions center and its deviation or width. The hidden unit
calculates the gap between an input data and the center of
its RBF. There also exists a single hidden layer and two sets

of weights, connecting hidden layers with input and output
layers. The weights which connect hidden layer with input
layer include the parameters of basis functions. The weights
are applied to constitute linear combinations of the activa-
tions of the basis functions (hidden units) to produce the
network output [54]. The output of the network is as Eq. 3:

M

() = Z Wi b;(x) + Wo
J=1

3

where M is the number of basic functions, x is the input
data vector, w,; represents a weighted connection between
the basic function and output layer, and ¢; is the nonlinear
function of the jth unit, which is typically a Gaussian func-
tion (Eq. 4):
2
[~

202
J

$;(x) = exp| - @)

where x and u are the input and the center of RBF unit,
respectively, and o; is the spread of the Gaussian basis
function.

By clicking on the “TrainData” function in the developed
extension, the same process as MLP gets activated.

ANFIS neural networks implementation in MAT-
LAB ANFIS is a combination of neural networks and
fuzzy systems that contain the benefits of both developed
by [57, 58]. Its structure is based on the feed forward
neural network system where each layer is formed from
the neuro-fuzzy system components [55]. For facilitating
the learning and adaptation process, the ANFIS performs
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according to the fuzzy surgeon model in an application
of adaptive system [59]. It makes ANFIS modeling more
systematic and without necessity for expert knowledge.
Figure 12 represents a surgeon fuzzy system that includes
two input parameters, one output parameter and two rules
[55, 60]. The corresponding ANFIS Architecture is also
indicated in Fig. 12 [54, 55]. Its rules are as follows:

Rule 1
Rule 2

Ifxis Ajand yis B, Thenf=px+qy+r,
If xis A, and y is B, Then f=px+q,y+r,

@ Springer

where x and y are the inputs, A; and B, are the fuzzy
sets, f; is the output, and p;, ¢;, and r; are the design
parameters determined during training [57]. It has five lay-
ers in which each output signal is entered into the nodes
of the next layer.

The layers from the input to output are as follows [55]:

Layer 1, Fuzzy layer, includes the membership functions.
Triangular and bell-shaped functions are the most popular
membership functions in this layer. Every node in this layer
is an adaptive node.
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Fig. 12 ANFIS process in MATLAB [54, 55]

Layer 2, product layer, represents the strength of each
rule. In fact, it evaluates the grade of activation of incorpo-
rated rules. Every node in this layer is a fixed node.

Layer 3, normalized layer, represents the normalized
strength of each rule. The ith node computes the ratio of
the ith rules firing strength. Every node in this layer is a
fixed node.

Layer 4, defuzzied layer, contains a linear combination of
multiplied inputs by the normalized strength w. It produces
the output of layers.

Layer 5, total output layer, calculates the sum of the out-
puts in layer 4 (Fig. 12).

The same back-and-forth method is run for the ANFIS
as well.

Step 3: developing the results in BIM

In this step, the results of the desired algorithm trained by
MATLAB are shown for the user in Revit. Therefore, 4 val-
ues are shown including train and test charts, all data results
from the algorithms and the measure of errors in the algo-
rithms by using different methods including mean square
error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE) and root-mean-square error
(RMSE) for all charts. Figure 11 shows the sample charts
of MLP algorithm after implementing the framework. As

it can be shown, for each chart, there are number of tables.
The first table is the data of training or test in MATLAB, the
second one is to show the linear regression for results, the
third one is to demonstrate errors and the final one shows the
variants of errors. All of these processes are automatically
implemented on the “TrainData” function in the developed
extension. It should be considered that MATLAB can save
the trained data. So, for testing the trained data for differ-
ent algorithms, another plugin has been created. This plugin
enables BIM engineers to figure out the best performing
neural network, the one which performs as close as that of
BIM-based cost estimation (Fig. 13).

An application called “Testing-Data” has been produced
in order to estimate and compare the cost of elements using
the trained data with BIM-based cost estimation. The plugin
extracts data from the new 3D model and the user can finally
estimate the cost of elements using trained data. This appli-
cation can give an estimation cost by different methods in the
form of charts along with the reports in MATLAB (Fig. 13).

By finding out the best ANN algorithm, there is no need
to repeat the whole previous process of examining differ-
ent types of neural networks and BIM engineers can simply
estimate the cost of building elements in the future projects
using “NN Cost Estimate” plugin. In fact, this tool estimates
the cost of elements using the trained algorithm and associ-
ates the results to each building element. Figure 14 shows
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Fig. 13 Testing data framework process

how this plugin works. As it can be seen, firstly, BIM engi-
neers need to choose the best neural network algorithm for
the current project and then a new parameter called “NN-
estimation” is generated and the estimated cost is drawn for
each element. The generated plugin also delivers the total
cost of each element.

The generated prototype

In order to implement the proposed method, an extension
and compilation of 6 plugins is developed. Figure 14 dem-
onstrates an overview of the generated prototype. As it can
be shown, the first plugin called “ImportICES” sends ICES
items into Revit using the ICES database created in Excel.
The second plugin CostEstimate” is to estimate the cost of
each element and produce a report to the user. This plugin
also creates a total cost parameter for each element in the
project and fills in the blank parameters with estimated costs.
The next part of the plugin, “TrainData” application, is for
sending created data and implementing ANN algorithms in
MATLAB. The next plugin is to test new data and enable
BIM engineers to test different algorithms in different pro-
jects and select the most suitable one for that project. The
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final plugin is for the cost estimation using the algorithm and
importing results to the Revit (Fig. 15).

Prototype validation

To validate the developed prototype, a real Construction
Engineering Organization Office located in Qom, a city of
Iran, was used. This building can accommodate around 900
people. The project includes four main floors with one base-
ment for parking and a facility room. The construction site
of the project has a total of 6800 square meters. Figure 16
depicts an overview of the project.

For estimating the cost of the project, all ICES items in
the project are imported using “ImportICES item” plugin.
Then, the user must determine appropriate ICES items for
each element of the project. After doing this, the user can
apply the “cost estimate” plugin for the project and the
plugin, then, estimates the cost and shows a popup win-
dow for summarized cost estimation report. The plugin
also reports the full ICES items along with the details in
the Excel file. It also produces a parameter which is named
the total cost for each element and the user can see the cost
by clicking on each. Figure 17 shows how the user should
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Fig. 16 The overview of the case study

choose ICES items for the elements, and Fig. 18 demon-
strates the summarized cost estimation reports. It should be
noticed that the most recent ICES version of 2020 was used
for this case study [33].

Table 2 shows the cost of each category of the project
elements. As it can be seen, the cost of the wall category is
1.564 E+12 Rials which constitutes the largest cost of the
project. Floor and windows are in the second to the third
ranks by representing 2.852 E+9 Rials, and 2.344 E+9
Rials, respectively. Door components make up the least
amount of the cost by 1.970 E+8 Rials.

The main challenge for the developed prototype is to
manually select the ICES items which is a very time con-
suming and error-prone task. The main solution for this issue

is to estimate the cost of elements using machine learning
approach. Therefore, all data of the elements in the project
are applied as the training data for ANN. So, all data were
extracted from Revit and imported into Excel using “Neural-
Network Data” plugin. By its activation, all required inputs
and outputs of the project were imported in the “Elements”
and “CostElements” of the Excel and as a result, a record
of 756 items of elements along with their costs were sent to
Excel. Figure 19 demonstrates the overview of the created
Excel.

After compiling the dataset for neural network, the
machine learning algorithms using MATLAB engine are
utilized. In fact, by “TrainingData” plugin, the user must
choose the desired algorithm and MATLAB finds the Excel
generated data, implements the algorithm and trains the data.
In this study, all algorithms were conducted for the case
study. Figure 20 shows the results of MLP algorithm. As it
can be shown on the Figure, 80% of the data were used for
training and 10% was dedicated for the validation and test,
respectively. To assess the performance of the algorithm,
four major indicators of MSE, MAE, MAPE and RMSE
were applied. The MSE, MAE, MAPE and RMSE for the
test data were found as 1.36 E+16, 40.13 E+6, 1.9983 and
11.664 E+7, respectively.

Figure 21 demonstrates the application of RBF algorithm
on the data. The data were performed by the maximum neu-
rons of 525 neurons. 80% of data were utilized for training
and the rest was used for testing. As it is shown in Fig. 20,
the MSE, MAE, MAPE and RMSE performance indexes
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Fig. 18 Results application by the prototype

Table 2 Cost estimation results for the case study

Category Cost (Rials)

Wall 1,564,731,620,316.910
Floor 2,852,832,946.115
Door 197,030,246.800
Windows 2,344,048,974.386
Total Cost 1,572,899,265,343.430

of the algorithm for testing data are 1.58 E+17, 99.07 E+6,
1.57 and 39.79 E+7, respectively.

Figure 22 indicates the results of the ANFIS. The initial
fuzzy inference system for data was performed by the maxi-
mum iteration of 450 through the surgeon function. 70% of
data were utilized for training and the rest was used for test-
ing. As it is seen in this Figure, the MSE, MAE, MAPE and
RMSE performance indexes of algorithm for testing data are
5.91 E+17,414.51 E+6, 37.59 and 76.90 E+7, respectively.

Once the data were trained, the algorithms are prepared
by adding new inputs and comparing the outputs for the
validation stage. In fact, the main objective of this step is to
compare different types of neural networks and choose the
optimized algorithm for cost estimation. For doing so, new
inputs were added in the” Entrance Data” sheet of the Excel.

By generating new inputs, the “TestingData” plugin was
applied for estimating the cost of elements using trained
algorithms. The plugin, first, estimated the cost of elements
using BIM and, then, predicted the costs using trained Data.
Figure 23 shows the generated results produced by differ-
ent algorithms. As it is inferred from this Figure, the best

100527 2.287508 10.17904 0 Area 26400 268,727
"100528 2287508 10.17904 0.10179 Area 75800 77,571
oo aaenos soessa orcuasres oo 22281

1w DO GGRHBY 0 BBETE <

algorithm which generated the most optimum results is
ANFIS. It has perfectly generated the cost estimates matched
with the 5D BIM system estimation. Then, RBF is in the
next place and MLP shows the worst results. It can be shown
from this figure that despite the good results of training,
the solo application of neural networks cannot, accurately,
estimate the cost of building elements in this prototype. This
can be due to the insufficient number of data which should
be used for training of this type of algorithm. However,
ANFIS has performed very superior against RBF and MLP
and also delivered the results well-aligned with 5D BIM. It
is, therefore, a recommended machine learning tool for 5D
BIM integration.

By choosing ANFIS as the best algorithm, there is no
need to repeat the process of testing different algorithms
and BIM engineers can choose ANFIS, hereafter, as the
most optimized algorithm for cost estimation of the future
projects. Therefore, a one-floor residential house, located
in Tehran, is chosen for cost estimation applying this algo-
rithm. Figure 24 shows the result of cost estimation using
ANFIS on this case study.

Table 3 compares the results of the ANFIS case study
(Fig. 24) with the BIM-based cost estimation which is the
same as the planned cost estimation of the building ele-
ments. The comparison indicates the acceptable perfor-
mance for the Wall category where there is around 13% of
variation between the ANFIS and BIM whereas the varia-
tions for the other elements including floor, doors and win-
dows are higher. This finding can be in view of benefiting
from the larger number of data for the wall category and
having smaller dataset of floor, windows and doors in the
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applied case study. All in all, ANFIS has indicated a good
performance in estimating the cost of elements, while there
is still a room for better performance by expanding the data-
set for more enhanced training.

Discussion and contribution

The lack of connection between BIM and cost specifica-
tions is one of the main barriers for adoption of BIM in the
construction industry of developing countries such as Iran.
Therefore, this paper aimed to bridge the gap of connect-
ing building cost specifications and BIM-based system.
ICES items are used as the representative of specifica-
tion where BIM engineers can apply the similar system
for other BIM-integrated applications. Previous studies
made attempt to separately estimate the cost of materials,
equipment and labors. However, this study develops an
integrated system in which all of the building cost items
are considered. Furthermore, non-informatics project cost
estimation process suffers from a great deal of time and
errors. Thus, there is a research priority to develop a clas-
sified building cost component and integrate with 5D BIM
in order to facilitate the procedure of cost estimation. This
necessity is particularly significant where BIM-driven par-
ametric capabilities can alleviate this error-prone process.
Therefore, this study developed a new informatics proto-
type which can connect ICES items with BIM authoring

_R=098%

,,|.|~,H'\ | :
LA U JEJUA .
® w % w w m W % %5 o s " Ir

MSE = 1.5833280796712960+17
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Resutts :Train Data
RBF

MSE: 1651187161197.508
MAE: 159025.5066

MAPE = 00088778

RMSE 1284985 2766

Results :Test Data

RBF
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MAE: 99072952.909
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RMSE 397910552.7215

tools. However, it should be noted that this process was
still semi-automatic and involved handiworks as users,
cost estimators and BIM managers should designate and
choose appropriate ICES items for each element in pro-
jects. So, cost estimation could be still time-consuming
and error-prone. In order to solve this problem, this study
employed machine learning and ANN algorithms in order
to fully automate the process. Thus, three main types of
ANN including MLP, RBF and ANFIS were implemented
and their performance was tested and compared via the
real-life construction case study. The results indicated the
most optimum performance for the ANFIS algorithm in
comparison with the other ANN algorithms. The reason is
in light of the integration of fuzzy and neural networks in
the ANFIS which declines the negative effects of the black
box mechanism of neural networks. However, the vali-
dation comparison between ANFIS and BIM-based cost
estimation implies that the algorithm should be trained
with larger and more expanded datasets in order to deliver
more accurate and closer results with that of BIM system.

In addition to the above advantages, cost estimators can
be benefited from the following items:

1. Cost estimators can automatically find out the quantities
of all construction elements along with the cost estima-
tion details in the form of reports and schedules.

2. A prototype application is developed which can use a
formulated process map and algorithms in the process of
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Fig.22 ANFIS algorithm results

cost estimation. The process can significantly decrease
estimators’ workloads and errors.

3. The total project cost can be identified in the preliminary
steps of the project development.

Conclusion

Traditional cost estimation process involves selecting indi-
vidual elements, using a tool to determine the dimensions
for the takeoff, and inputting the quantities into the QTO
list. These shortcomings require estimators, engineers and
construction managers to spend a substantial amount of
time, errors and omissions. However, using BIM systems
can facilitate the process of accurate QTO, as they are
enriched by object-based and built-in parametric informa-
tion. Although many studies have been done in the area
of implementing BIM approach in the cost estimation,

@ Springer

very little is known regarding an integrated and standard-
ized BIM-based system for cost estimation using neural
networks algorithms in the design phase of construction
projects. This is particularly prominent for those develop-
ing countries such as Iran, where the BIM implementation
level and construction digital transformation are in the
embryonic steps.

This research aimed to develop a new cost estimation infor-
matics prototype which integrates building cost components
of ICES items with BIM. The automation process was also
sought through the ANN algorithms including MLP, RBF and
ANFIS. The proposed prototype not only introduces the stand-
ardized and integrated BIM-based system in the preliminary
phase of a construction project, but it also makes a greater
stride for encouraging cost specifications to be integrated with
BIM. Progressively, a BIM-based application in Revit environ-
ment was also developed to facilitate the process of cost esti-
mation and in continue, the MATLAB was used to automate
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Table 3 Comparing the cost estimation using ANFIS and BIM-based
system

Cost estimation BIM-based cost ~ Variation%
using ANFIS estimation
Walls 4,523,196,661 3,986,712,706 13.4568
Floor 132,387,671.1 100,199,942.5 32.1235
Doors 37,032,174.88 46,541,225.91 —20.431458
Windows 19,761,277.98 15,999,419.57 23.512468

the process by implementing neural network algorithms on
the data.

The developed prototype was further examined through a
real-life construction case study. For automating the cost esti-
mation process, the results of the case study were utilized for
training ANN algorithms. The research also compared and
examined different neural networks. The results show that
ANFIS delivers the best results and is the most aligned algo-
rithm with the BIM-based cost estimation system, as compared

@ Springer

to the other algorithms. Despite the relatively good perfor-
mance of the other algorithms, the sole neural network system
failed to accurately estimate the cost of components vis-a-vis
that of BIM and ANFIS-integrated system. For boosting the
performance of those algorithms, it is recommended to add
the number of training data, separate different components and
train each separately for getting better results.

In addition, only four categories of building elements
including wall, floor, door and windows were included in this
study, while there are other building elements which can be
considered too. The current study only takes into account the
architectural and structural parts of ICES items whereas there
are other parts in the ICES such as electrical and mechanical
elements which can be included in the future works. Moreover,
there are some coefficients in the ICES to apply the rate of
inflation in building elements during the construction phase of
a project. It is recommended to incorporate these coefficients
in the future works of cost estimation.
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Appendix 1: Applying different scenarios
in the cost estimation using the current

methodology
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